Karşılıklı Bağımlılık İçeren Koşullar İçin Korelasyon Analizleri

Selim Hovardaoğlu*

Ankara Üniversitesi

Özet

Bu yazının amacı, denek çiftlerinin ya da ikili (eşli) grupların kullanıldığı deneysel olmayan araştırmalarda kullanılan yeni bir hesaplama tekniğini tanıtmaktır. Gonzales ve Griffin (1997) bu kapsamda hazırladıkları yazıda, korelasyon hesaplamaları için yeni eşitlikler önermemişler, veri matrislerinin yeniden düzenlenmesini ve buradan hesaplanan korelasyonların anlamlılğ̆ı hakkında karar verirken izlenmesi gereken stratejileri açıklamışlardır. Yazıda önerilen stratejiler ana hatlarıyla ve örneklerle sunulmaktadır.

Abstract
 Correlation Analysis on Data Including Dyadic Interdependence

The purpose of this paper is to introduce a new statistical analysis used in nonexperimental studies on dyadic couples or partners. In their study on this issue, Gonzales and Griffin (1997) proposed that the data matrix should be rearranged for the dyadic data, developed a new equation for calculating correlations on these data sets, and explained new strategies to be employed in deciding the significance of the obtained correlations. This paper presents the basic strategies concerning the analysis of dyadic data by giving specific examples.

[^0]Bu yazida, Gonzales ve Griffin (1997) tarafından denek çiftlerine ait veriler için önerilen korelasyon analizlerinin tanttılması amaçlanmıştır. Bilindiği gibi korelasyon, iki değişken arasındaki ilişkinin miktarını gösteren bir değerdir ve deneysel araştırmalarda, bağımlı değişkendeki varyansın yüzde kaçının bağımsız değişkenle açıklanabildiğini görebilmek için bu değerin karesi hesaplanmaktadır (Edwards, 1995; Hovardaoğlu, 2000). Hesaplama eşitliği değişmemekle birlikte, değişkenlerin niteliğine göre farklı adlarla anılan korelasyon katsayıları bulunmaktadır. Söz gelimi, hem X hem de Y değişkeni sürekliyse, hesaplanan korelasyon, Pearson Momentler Çarpımı katsayı olarak adlandırılmaktadır. Bu yazıda ele alınan açıklamalar da, Pearson korelasyon katsayısı için geçerlidir.

Yazının başlığında yer alan karşılıklı bağımllık (interdependence) kavramı ise denek çiftlerine ait verileri betimlemek amacıyla kullanılmıştır. Psikoloji literatüründe denek çiftleri kavramı zaman zaman kullanılmaktadır. Bununla birlikte, araştırmanın niteliğine göre denek çiftleri kavramı farklı anlamlara gelebilmektedir. Deneysel araştırmalarda eşleştirilmiş (matched) gruplar olarak kullanılan bu kavram, belirli bir ölçüte göre araştırmacı tarafından gerçekleştirilen bir süreç ile seçkisiz atamaya (random assignment) işaret etmektedir. Eşleştirilmiş denek çiftleri kullanıldığında, hesaplanan korelasyon katsayısı, aynı deneğin iki farklı koşuldaki ölçümü arasındaki bağlantıyı göstermektedir. Diğer yandan, deneysel olmayan araştırmalarda kullanılan denek çiftleri, seçkisiz atama içermediğinden, literatürde çift (couple), ortak (partner) ya da ikili (dyad) gibi kavramlarla betimlenmektedir. Bu tür araştırmalarda, ikilideki bireylerin ölçümleri arasındaki ilişki in-
celendiğinde, kimi zaman bireyin kategorisini saptamak zorlaşırken, kimi zaman da, belli bir kategoride bulunmak, etkili olabilmektedir. Diğer bir deyişle, herhangi bir çevresel değişken ya da denek değişkenini dikkate alarak kategorileri oluşturmak zor olabileceği gibi belli bir kategoride bulunmanın kendisi bir hata kaynağ̣ haline gelebilir. Söz gelimi, aynı cinsten yakın arkadaşlardan hangisinin ilk hangisinin de ikinci kategoride yer alacağını belirlemenin herhangi bir ölçütü bulunmamaktadır. Buna karşılık, evli çiftlerin denek olarak kullanıldığı araştırmalarda, karı - kocanın ölçümleri arasında korelasyon hesaplarken, bu kategorilerin kendisi hata kaynağı haline gelebilmektedir (Gonzales ve Griffin, 1997). Bu yazıda ele alınan görüşler, eşleşmiş denek grupları için değil, deneysel olmayan araştırmalarda kullanılan denek çiftleri için geçerlidir. Yukarıda da belirtildiği gibi deneysel olmayan araştırmalarda kullanılan denek çiftlerini iki grupta toplamak mümkündür. Bunlardan biri, birbirinin yerine konabilen (exchangeable) denek çiftleridir (Gonzales ve Griffin, 1997). Bu tür denek çiftleri, herhangi bir ölçüt yönünden çifttekì her bireyin kategorisinin belirlenememesi sonucu oluşan çiftlerdir. Örneğin, aynı cinsten yakın arkadaşların sınav başarılarının ölçüldüğü araştırmada, denek çiftlerindeki her bireyin hangi kategoride değerlendirileceğini gösteren bir ölçüt bulunmamaktadır. Diğer yandan, yine deneysel olmayan bazı araştırmalarda kullanılan denek çiftlerindeki her bireyin belli bir ölçüte göre hangi kategoride yer alacağı belirlidir. Bu tür denek çiftlerine kategorisi belli (distinguished) çiftler denmektedir (Gonzales ve Griffin, 1997). Örneğin, karı - koca, anne - çocuk ya da baba - çocuk gibi denek çiftleri kullanıldığında, çiftteki her bireyin kategorisini belli bir ölçüte göre belirlemek mümkün olabilmektedir.

Gonzales ve Griffin'e göre birbirinin yerine konabilen denek çiflerinde veri matrisinin oluşturulmasında bazı sorunlar bulunmaktadır ve ne tür çift kullanılırsa kullanılsın, verilere uygulanan analiz stratejileri bazı hataları içermektedir. Gonzales ve Griffin, bu hata kaynaklarının, bazı analiz sayıltılarıyla bağlantılı olduğunu ileri sürmektedirler. Bu hata kaynakları, karşılıklı bağımlılık gösteren denek çiftlerinin, birbirinden bağımsız olduklarına ilişkin sayıltı ile buna bağlı olarak, örneklemin yarıya bölünüp, yarısının silinmesi ve çiftlerden elde edilen korelasyonların, ikilideki bireylerin bağımsız ölçümlerine ait gibi incelenip yorumlanmasıdır. Yazarlar, bu tür hataların önlenmesi için veri matrisinin yeniden düzenlenmesini ve korelasyon katsayısının anlamlılığının sınanmasında farklı bir yol izlenmesini önermişlerdir. Bu önerilerin tartışmasına geçmeden önce ölçüm alınan değişken sayısına da değinmek yararlıdır. Denek çiftleriyle çalışan araştırmacı, çifteki bireylerin ya belirli bir özelliğini, ya iki özelliğini ya da ikiden fazla özelliğini öļebilir. Ikiden fazla özelliğin ölçülmesi durumu çoklu korelasyon başlığında ele alınmaktadır ve bu yazının kapsamı dışında tutulmuştur. Bu yazıda ele alınan konular, bir ve iki özelliğin ölçülmesi durumunda karşılaşılan sorunların çözümüne yöneliktir.

1. Çiftlere ait bir özelliǧin ölçullmesi:

Denek çiftlerinin bir özelliğinin ölçüldüğü araştırmalara, aynı cinsten yakın arkadaşların sınav başarılarının ya da evli çiftlerin kaygı düzeylerinin incelendiği çalışmalar örnek olarak verilebilir. Gonzales ve Griffin, bu tür araştırmalar için Tablo 1'de gösterilen veri matrisinin kullanılmasını önermişlerdir. Bu matristeki kategori sütunu, çiftteki bireyleren her birinin kategorisini betimlemek amacıyla kullanılmıştır.

Kategorisi belli olmayan denek çiftleri kullanılsa bile çiftteki bireylerden birini bir kategoriye, diğerini de ikinci kategoriye seçkisiz olarak yerleştirmek mümkündür. Veri matrisindeki Y sembolü, davranış ölçümünü, altındaki indislerden ilki, kaçıncı denek çiftine, ikinci indis ise bir çiftteki kaçıncı deneğe ait olduğunu göstermektedir. Söz gelimi, Y_{21}, ikinci denek çiftindeki ilk deneğin ölçümü anlamına gelmektedir.

Tablo 1. Denek çiftleri için düzenlenen veri matrisi.

Çift no.	Kategori	Değişken	
	(C)	Y	Y^{\prime}
$\cdot 1$	1	Y_{11}	Y_{12}
	2	Y_{12}	Y_{11}
2	1	Y_{21}	Y_{22}
	2	Y_{22}	Y_{12}
3	1	Y_{31}	Y_{32}
	2	Y_{32}	Y_{31}
\cdot		\cdot	\cdot
\cdot		\cdot	\cdot
n	1	$\mathrm{Y}_{\mathrm{n} 1}$	$\mathrm{Y}_{\mathrm{n} 2}$
	2	$\mathrm{Y}_{\mathrm{n} 2}$	$\mathrm{Y}_{\mathrm{n} 1}$

Tablo 1'de de görüldüğü gibi denek çiftlerindeki her bireyin ölçümü hem Y hem de Y^{\prime} sütununda bulunmaktadır. Söz gelimi ilk çifti oluşturan iki bireyden birinin ölçümü önce Y sütununda gösterilmişse, bir alt satırda Y^{\prime} sütununda bulunmaktadır. Benzer olarak, diğer bireyin ölçümü önce Y^{\prime}, sonra da Y sütununda gösterilmiştir. Hem birbiri yerine konabilen hem de kategorisi belli denek çiftleri kullanıldığında, r_{YY} hesaplanmakta ve temel yokluk de-
necesi de, $\mathrm{H}_{0}: \rho_{\mathrm{YY}^{\prime}}=0$ olarak gösterilmektedir. Gonzales ve Griffin'e göre birbirinin yerine konabilen denek çiftleri kullanıldığında, bu korelasyon için kurulan yokluk denencesini sınamak için etkin örneklem büyüklüğüne (effective sample size) dayalı olarak karar vermek gerekmektedir. Bu karar verme sürecinin eşitliği de şudur:

$$
\begin{equation*}
\mathrm{Z}=\mathrm{r}_{\mathrm{YY}^{\prime}} \sqrt{N} \tag{1}
\end{equation*}
$$

Bu eşitlikte $\mathrm{r}_{\mathrm{YY}^{\prime}}$ denek çiftlerindeki bireylerin ölçümleri arasındaki korelasyon katsayısını, N , çift sayısını, Z ise birim normal dağılım elemanını temsil etmektedir. Diğer yandan, kategorisi belli denek çiftleri kullanıldığında, iki ölçüm arasındaki korelasyon katsayısına, belirli bir kategoride bulunmanın etkisi de karışmış olabilir. Dolayısıyla, kategori etkisinin sabit tutulduğu kısmi korelasyon katsayıs1 $\mathrm{r}_{\mathrm{YY}^{\prime} . \mathrm{c}}$ hesaplanmalıdır (Edwards, 1995; Gonzales ve Griffin, 1997). Bu korelasyon katsayis1, SPSS, SAS gibi hazır programların menüsünde bulunmaktadır. Bu durumda, $\mathrm{H}_{0}: \rho=0$ hakkında karar verebilmek için:

$$
\begin{equation*}
\mathrm{Z}=\mathrm{r}_{\mathrm{YY}^{\prime} . \mathrm{c}} \sqrt{N} \tag{2}
\end{equation*}
$$

eşitliği kullanılmalıdır. Bu eşitlikte $\mathrm{r}_{\mathrm{YY}^{\prime} . \mathrm{c}}$ kısmi korelasyon katsayısını, N ise çift sayısını temsil etmektedir. Z değeri birim normal dağılım elemanı olduğundan, yokluk denencesi hakkında karar verirken yine bu dağılımdan yararlanılmaktadır.

Şimdi birbirinin yerine konabilen ve kategorisi denek çiftlerin birer örnek vererek, veri matrisinin düzenlenmesini, korelasyon katsay1ları ile bunların anlamlılıklarının incelenmesini somut hale getirmek mümkün olacaktır.
A) Bir araştırmada, aynı cinsten yakın arkadaşların sınav başarıları ölçülüyor ve bu kişilerin sınav notları arasında ilişki olup olmadığı araşturıliyor.
B) Bir araştırmada, evli çiftlerin kaygı düzeyleri ölçülüyor.

Bu iki araştırmanın verileri, Tablo 2'de gösterildiği gibi olsun.

Tablo 2. Veri matrisi.

Çift no.	Kategori (C)	Değişken	
		Y	Y^{\prime}
1	1	5	7
	2	7	5
2	1	4	4
	2	4	4
3	1	2	4
	2	4	2
4	1	3	5
	2	5	3
5	1	3	6
	2	6	3
6	1	5	6
	2	6	5
7	1	5	8
	2	8	5
8	1	5	7
	2	7	5
9	1	5	6
	2	6	5
10	1	3	6
	2	6	3

Bu örnek için $\mathrm{r}_{\mathrm{YY}^{\prime}}$ değeri -0.001 olarak hesaplanmıştır. Bu değerler Eşitlik 1'de yerine konursa:
$Z=(-0.001) \sqrt{10}=-0.003$ elde edilir ki, $\% 5$
I. Tip hata olasılığıyla tablo değeri ∓ 1.96 olduğundan, $\mathrm{H}_{0}: \rho=0$ yokluk denencesinin doğru olduğuna karar verilir. Yokluk denencesinin doğru olması, korelasyon katsayısının sıfıra eşit olması anlamına geldiğinden, aynı cinsten yakın arkadaşların sınav başarıları arasında bir ilişki ya da bağlantı olmadığı sonucuna varılabilir.

Diğer yandan, evli çiftlerin kaygı düzeyleriyle ilgili çalışma için $\mathrm{r}_{\mathrm{YY}^{\prime} \mathrm{c}}=0.67$ değeri elde edilir. Bu değer, belli bir kategoride olmanın etkisi çıkartıldıktan sonra evli çiftlerin kaygı düzeyleri arasındaki korelasyonu temsil etmektedir ve Eşitlik 2'de yerine konursa:
$\mathrm{Z}=(0.67) \sqrt{10}=2.12$ elde edilir ki, \%5 I. Tip hata olasılığıyla tablo değeri ∓ 1.96 olduğundan, $\mathrm{H}_{0}: \rho=0$ yokluk denencesinin doğru olmadığına karar verilir. Yokluk denencesinin yanlış olması, evli çiftlerin kaygı düzeyleri arasında ilişki olduğu anlamına gelmektedir.
2. Çiftlere ait iki özelliğin ölçülmesi:

Bu tür araştırmalarda, denek çiftlerine ait iki farklı özellik ölçülmekte ve bu veriler yardımıyla genel (overall) korelasyonla birlikte kategoriler arasındaki çapraz korelasyonlar hesaplanabilmektedir. Bunlarla ilgili ayrıntılara geçmeden önce bu tür araştırmalar için öngörülen veri matrisine kisaca değinmekte yarar vardır. Çiftlere ait iki özellik ölçüldüğünde, ölçüm sonuçlarını gösteren veri matrisinin bir örneği Tablo 3'de gösterilmiştir.

Tablo 3. Çiftlere ait iki özelliğin ölçülmesi durumunda kullanılacak veri matrisi.

Çift no.	Kategori (C)	Değişken				
1	1	Y_{11}	Y_{12}	X_{11}	X_{12}	
	2	Y_{12}	Y_{11}	X_{12}	X_{11}	
2	1	Y_{21}	Y_{22}	X_{21}	X_{22}	
	2	Y_{22}	Y_{12}	X_{22}	X_{12}	
3	1	Y_{31}	Y_{32}	X_{31}	X_{32}	
	2	Y_{32}	Y_{31}	X_{32}	X_{31}	
\cdot		\cdot	\cdot	\cdot	\cdot	
\cdot		\cdot	\cdot	\cdot	\cdot	
n	1	$\mathrm{Y}_{\mathrm{n} 1}$	$\mathrm{Y}_{\mathrm{n} 2}$	$\mathrm{X}_{\mathrm{n} 1}$	$\mathrm{X}_{\mathrm{n} 2}$	
	2	$\mathrm{Y}_{\mathrm{n} 2}$	$\mathrm{Y}_{\mathrm{n} 1}$	$\mathrm{X}_{\mathrm{n} 2}$	$\mathrm{X}_{\mathrm{n} 1}$	

Tablo 3' deki veri matrisi kullanıldığında, birbiri yerine konabilen denek çiftleri için genel (overall) korelasyonlar ile kategoriler arasındaki çapraz (cross interclass) korelasyonlar hesaplanabilir. Genel korelasyon, bireylerin X ve Y ölçümleri arasındaki korelasyonlardır. Kategoriler arasındaki çapraz korelasyonlar ise bireylerin X ölçümleri ile eşlerinin Y ölçümü ya da bireylerin Y ölçümü ile eşlerinin X ölçümü arasındaki korelasyonlardır. Bu korelasyonları r_{xy} ya da $\mathrm{r}_{\mathrm{x}^{\prime} y^{\prime}}$ olarak göstermek mümkündür. Gerçekte bu iki korelasyon katsayısı birbirinin eşdeğeridir ve biri hakkında karar verilince diğeri hakkında da karar verilmiş olur. Diğer yandan, kategoriler arasındaki çapraz korelasyonlar, çiftlerin ölçümleri arasındaki bağlantıları vermektedir. Bu korelasyonlar $\mathrm{r}_{\mathrm{xy}}{ }^{\prime}$ ya da $\mathrm{r}_{\mathrm{x}^{\prime} \mathrm{y}}$ olarak gösterilebilir. Bunlar da eşdeğer korelasyonlar olduğundan, biri hakkında verilecek karar, diğeri için verilecek kararla aynı anlama gelmek-
tedir. Bunlara ek olarak, Tablo 3'deki veriler yardımıyla $\mathrm{r}_{\mathrm{xx}}{ }^{\prime}$ ve r_{yy} katsayıları da bulunabilir ki, bu değerler, önceki kısımda ele alınan korelasyon katsayılarıyla aynı anlama gelmektedir ve denek çiftlerinin aynı özelliklerine ait ölçümleri arasındaki korelasyonları temsil etmektedir. Gonzales ve Griffin, genel korelasyonlar ile kategoriler arasındaki çapraz korelasyonların anlamlılığı için karar verirken birim normal dağılımı kullanmak gerektiğini belirtmekle birlikte bu iki yokluk denencesinin smanmasinda yararlanılacak etkin örneklem büyüklüğünün farklı biçimde hesaplanacağını da ileri sürmüşlerdir. $\mathrm{H}_{0}: \rho_{\mathrm{xy}}=0$ ya da eşdeğeri $\mathrm{H}_{0}: \rho_{x^{\prime} y^{\prime}}=0$ için karar veririken Eşitlik 3 kullanılabilir:

$$
\begin{equation*}
\mathrm{Z}=\mathrm{r}_{\mathrm{xy}} \sqrt{N^{*}} \tag{3}
\end{equation*}
$$

Bu eşitlikte $r_{x y}$ ya da $r_{x^{\prime} y^{\prime}}$ iki farklı ölçüm arasındaki korelasyon katsayısını, Z birim normali temsil etmektedir. N^{*} değeri ise şöyle hesaplanmaktadır:

$$
\begin{equation*}
\mathrm{N}^{*}=2 \mathrm{~N} /\left(1+\mathrm{r}_{\mathrm{xx}} \mathrm{r}_{\mathrm{yy}}{ }^{\prime}+\mathrm{r}_{\mathrm{xy}}{ }^{2}{ }^{2}\right) \tag{4}
\end{equation*}
$$

Bu eşitlikte N çift sayısını, r_{xx}, ̧̧iftlerin X ölçümleri arasındaki korelasyonu; $\mathrm{r}_{\mathrm{y} y^{\prime}}$ ise çiftlerin Y ölçümleri arasındaki korelasyonu temsil etmektedir. Diğer yandan, r_{xy} değeri, X ve Y^{\prime} sütunlarındaki veriler yardımıyla hesaplanan kategoriler arasındaki çapraz korelasyondur.

Genel korelasyon için böylesine karar verilmesinin yanı sıra, kategoriler arasındaki çapraz korelasyon katsayıları hakkında karar verirken Eşitlik 5 ve 6 kullanılabilir. Buradaki yokluk denencesi $H_{0}: \rho_{x y^{\prime}}=0$ olarak yazılabilir.

$$
\begin{equation*}
\mathrm{Z}=\mathrm{r}_{\mathrm{x}^{\prime} \mathrm{y}} \sqrt{N^{* *}} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{N}^{* *}=2 \mathrm{~N} /\left(1+\mathrm{r}_{\mathrm{xx}} \mathrm{r}_{\mathrm{yy}}{ }^{\prime}+\mathrm{r}_{\mathrm{xy}}{ }^{2}\right) \tag{6}
\end{equation*}
$$

Karşılıklı bağımlılık içeren durumlardaki birbirinin yerine konabilen denek çiftlerinin X ve Y özelliklerinin ölçümü için şöyle bir örnek verebiliriz. Aynı cinsten yakın arkadaşların stres (X) ve kaygı (Y) düzeylerinin ölçülerek, Tablo 4'deki verilerin elde edildiğini varsayalim.

Tablo 4. Aynı cinsten yakın arkadaşların stres (X) ve kaygı (Y) puanları.

Çift no.	Kategori (C)	Y	Y^{\prime}	X	X^{\prime}
1	1	5	7	15	7
	2	7	5	7	15
2	1	4	4	14	4
	2	4	4	4	14
3	1	2	4	12	3
	2	4	2	3	12
4	1	3	5	11	3
	2	5	3	3	11
5	1	3	6	7	3
	2	6	3	3	7
6	1	5	6	21	9
	2	6	5	9	21
7	1	5	8	19	7
	2	8	5	7	19
8	1	5	7	17	9
	2	7	5	9	17
9	1	5	6	12	9
	2	6	5	9	12
10	1	3	6	11	4
	2	6	3	4	11

Tablo 4'deki veriler yardımıyla şu korelasyon değerleri hesaplanabilir:

$$
\begin{array}{ll}
r_{x y}=-0.173 & r_{x x^{\prime}}=-0.335 \\
r_{x y^{\prime}}=0.781 & r_{y y^{\prime}}=-0.001
\end{array}
$$

Burada $r_{x y}=r_{x^{\prime} y}$ ve $_{x y^{\prime}}=r_{x^{\prime} y}$ olduğunu haturda tutmakta yarar vardır. $\mathrm{H}_{0}: \rho_{\mathrm{xy}}=0$ hakkında karar vermek için Eşitlik 3 ve 4 kullanılabilir:

$$
\mathrm{N}^{*}=(2)(10) /[1+(-0.335)(-0.001)+
$$ $\left.(0.781)^{2}\right]=12.42 \mathrm{ve}$

$$
Z=(-0.173) \sqrt{12.42}=-0.61 \text { elde edilir. }
$$

\%5 I. Tip hata olasılığıyla tablo değeri ± 1.96 olduğu için yokluk denencesinin doğru olduğuna karar verilebilir. Dolayısıyla, denek çiftleri bir kenara bırakılırsa, stres ve kaygı ölçümleri arasında anlamlı bir ilişki olmadığı sonucuna varılabilir.

Diğer yandan, çiftteki bireylerden birinin herhangi bir ölçümü ile çiftteki diğer bireyin diğer değişkendeki ölçümü arasında bağlantı olup olmadığı, $\mathrm{H}_{0}: \rho_{\mathrm{xy}}=0$ yokluk denencesi hakkında karar vererek anlaşılabilir. Bu amaçla Eşitlik 5 ve 6 kullanılırsa, şu sonuçlar elde edilir:

$$
\begin{aligned}
\mathrm{N}^{* *} & =(2)(10) /[1+(-0.335)(-0.001)+(- \\
\left.0.173)^{2}\right] & =19.41 \mathrm{ve}
\end{aligned}
$$

$$
Z=(0.781)^{\sqrt{19.41}}=3.44
$$

Bu durumda, $\alpha=0.05$ için tablo değeri ± 1.96 olduğudan, yokluk denencesinin yanlış olduğu sonucuna varılabilir. Bu sonuç, çiftteki bir deneğin X ölçümü ile eşi olan deneğin Y ölçümü arasında anlamlı bir ilişki olduğu anlamına gelmektedir. Dolayısıyla, bu örnek için aynı cinsten yakın arkadaşların kaygı ve stres ölçümlerinin anlamlı ilişki gösterdiği ileri sürülebilir.

Kategorisi belli olan denek çiftleri kullanıldığında, daha önce de belirtildiği gibi bir kate-
goride bulunmanın etkisi sabit tutularak kısmi korelasyon katsayıları bulunmalı ve bunlar hakkında karar verilmelidir. Bu tür denek çiftleri kullanıldığında, yukarıda belirtilen genel ve kategoriler arasındaki çapraz korelasyonlar, kategori etkisi sabit tutularak, kismi korelasyon olarak hesaplanmalı ve $\mathrm{H}_{0}: \rho_{\mathrm{xy} . \mathrm{c}}=0$ ile $\mathrm{H}_{0}: \rho_{\mathrm{xy} . \mathrm{c}}=$ 0 hakkında karar verilmelidir. $\mathrm{H}_{0}: \rho_{\mathrm{xy} . \mathrm{c}}=0$ için karar verirken, Eşitlik 7 ve 8 kullanılabilir.

$$
\begin{align*}
& \mathrm{Z}=\mathrm{r}_{\mathrm{xy} \cdot \mathrm{c}} \sqrt{N^{*}} \tag{7}\\
& \mathrm{~N}^{*}=2 \mathrm{~N} /\left(1+\mathrm{r}_{\mathrm{xx}^{\prime} . \mathrm{c}} \mathrm{r}_{\mathrm{yy}^{\prime} . \mathrm{c}}+\mathrm{r}_{\mathrm{xy} y^{\prime} . \mathrm{c}}^{2}\right) \tag{8}
\end{align*}
$$

Diğer yandan, $\mathrm{H}_{0}: \rho_{\mathrm{xy}^{\prime} . \mathrm{c}}=0$ için karar verilirken yararlanılan eşitlikler şunlardır:

$$
\begin{align*}
& \mathrm{Z}=\mathrm{r}_{\mathrm{x}^{\prime} \mathrm{y} \cdot \mathrm{c}} \sqrt{N^{* *}} \tag{9}\\
& \mathrm{~N}^{* *}=2 \mathrm{~N} /\left(1+\mathrm{r}_{\mathrm{xx}^{\prime} \cdot \mathrm{c}} \mathrm{r}_{\mathrm{yy}^{\prime} \cdot \mathrm{c}}+\mathrm{r}_{\mathrm{xy} \cdot \mathrm{c}}{ }^{2}\right) \tag{10}
\end{align*}
$$

Buna bir örnek olarak, evli çiftlerin stres (X) ve kaygı ${ }_{1}(\mathrm{Y})$ düzeylerinin ölçüldüğü araştırma için Tablo 4'deki veriler kullanılarak şu değerler bulunabilir:

$$
\begin{array}{ll}
\mathrm{r}_{\mathrm{xy} . \mathrm{c}}=0.644 & \mathrm{r}_{\mathrm{xy} \cdot \mathrm{c}}=0.593 \\
\mathrm{r}_{\mathrm{xx} \cdot \mathrm{c}}=0.645 & \mathrm{r}_{\mathrm{yy}} / \mathrm{c} \cdot \mathrm{c} \\
=0.669
\end{array}
$$

$\mathrm{H}_{0}: \rho_{\mathrm{xy.c}}=0$ için karar verirken şu değerler bulunabilir:

$$
\mathrm{N}^{*}=(2)(10) /\left[1+(0.645)(0.669)+(0.593)^{2}\right]
$$

$=11.22 \mathrm{ve} \mathrm{Z}=(0.644)^{\sqrt{11.22}}=2.16 \mathrm{Bu}$ değerler yardımıyla, I. Tip hata olasılığı $\% 5$ kabul edildiğinde, stres ve kaygı puanları arasında anlamlı bir ilişki olduğu ileri sürülebilir.Eşlerin stres ve kaygı puanları arasında anlamlı ilişki olup olmadığını belirlemek için $H_{0}: \rho_{x y^{\prime} . c}=0$ hakkında karar verilebilir. Bu amaçla:

$$
\mathrm{N}^{* *}=(2)(10) /[1+(0.645)(0.669)+
$$

$\left.(0.644)^{2}\right]=10.83$ ve $Z=(0.593)^{\sqrt{10.83}}=$
1.95 elde edilir ki, yine I. Tip hata olasıllğ $1 \% 5$ alınırsa, yokluk denencesinin doğru olduğuna karar verilebilir ki, bu sonuç, evli çiftlerde kadının stres düzeyi ile kocasının kaygı düzeyi (ya da tersi) arasında anlamlı bir ilişki olmadığına işaret etmektedir.

Kaynakça

Edwards, A. L. (1995). Doğrusal Regrasyon ve Korelasyona Giriş. (Çev.) S. Hovardaoğlu. Ankara: Hatiboglu.

Gonzales, R., \& Griffin, D. (1997). On the statistics of interdependence: Treating dyadic data with respect. (in) S. Duck (ed) Handbook of Personal Relationships. New york: Wiley.

Hovardaoğlu, S. (2000). Davranış Bilimleri için Araştırma Teknikleri. Ankara: VE - GA.

[^0]: *Yazışma Adresi: Prof. Dr. Selim Hovardaoğlu, Ankara Üniversitesi Dil ve Tarih Coğrafya Fakültesi Psikoloji Bölümü, Sıhhiye/Ankara. E-posta: shovardaoglu@yahoo.com

